ridgeplot._kde module¶
Kernel density estimation (KDE) utilities.
- ridgeplot._kde.KDEPoints: TypeAlias = int | collections.abc.Collection[int | numpy.integer[typing_extensions.Any] | float | numpy.floating[typing_extensions.Any]]¶
The
ridgeplot.ridgeplot.kde_points
parameter.
- ridgeplot._kde.KDEBandwidth: TypeAlias = str | float | collections.abc.Callable[[collections.abc.Collection[int | numpy.integer[typing_extensions.Any] | float | numpy.floating[typing_extensions.Any]], statsmodels.sandbox.nonparametric.kernels.CustomKernel], float]¶
The
ridgeplot.ridgeplot.bandwidth
parameter.
- ridgeplot._kde._is_sample_weights(obj)[source]¶
Type guard for
SampleWeights
.Examples
>>> _is_sample_weights("definitely not") False >>> _is_sample_weights([1, 2, 3.14]) True >>> _is_sample_weights([1, 2, "3"]) False >>> _is_sample_weights(None) True
- ridgeplot._kde._is_shallow_sample_weights(obj)[source]¶
Type guard for
ShallowSampleWeightsArray
.Examples
>>> _is_shallow_sample_weights("definitely not") False >>> _is_shallow_sample_weights([1, 2, 3]) False >>> _is_shallow_sample_weights([[1, 2, 3], [4, 5, 6]]) True >>> _is_shallow_sample_weights([[1, 2, "3"], [4, 5, None]]) False >>> _is_shallow_sample_weights([[1, 2, 3], None]) True
- ridgeplot._kde.normalize_sample_weights(sample_weights, samples)[source]¶
Normalize the sample weights to the correct shape.
Examples
>>> samples = [[[1, 2], [3, 4]], [[5, 6]]] >>> normalize_sample_weights(None, samples) [[None, None], [None]] >>> normalize_sample_weights([8, 9], samples) [[[8, 9], [8, 9]], [[8, 9]]] >>> weights = [[[0, 1], None], [[2, 3]]] >>> normalize_sample_weights(weights, samples) == weights True >>> normalize_sample_weights([None, [0, 1]], samples) [[None, None], [[0, 1]]]